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ABSTRACT

A major outstanding problem in solar physics is the confinement of the solar tachocline, the thin
shear layer that separates nearly solid-body rotation in the radiative interior from strong di↵erential
rotation in the convection zone. Here, we present the first 3-D, global solar simulation in which a
tachocline is confined by a self-excited dynamo. The non-axisymmetric magnetism is initially built in
the convection zone and then di↵usively imprints downward. Additionally, the field is locally amplified
throughout the radiative interior by vigorous horizontal motions that arise from equatorial Rossby
waves and possibly shear instabilities. Our work thus challenges the long-held notion that the Sun’s
dynamo magnetic field is amplified only as deep as the tachocline and stored in a quiescent radiative
interior.

Keywords: Solar dynamo; Solar di↵erential rotation; Solar interior; Solar radiative zone; Solar convec-
tive zone

1. INTRODUCTION

In the solar tachocline at the base of the convection zone, strong di↵erential rotation (⇠30% faster at the equator
than at the poles) transitions to nearly solid-body rotation in the radiative interior (e.g., Brown et al. 1989; Howe
et al. 2000). Helioseismic estimates of the tachocline’s width lie around 0.05R�, where R� ⌘ 6.96⇥ 108 m is the solar
radius (Howe 2009). Because of this strong shear, the tachocline likely plays a central role in the solar dynamo. The
“interface” dynamo paradigm, in particular, holds that toroidal magnetism is primarily generated by the tachocline’s
shear (e.g., Parker 1993; Charbonneau & MacGregor 1997), and is then stored for long time intervals in the quiescent
radiative interior (e.g., Spruit & van Ballegooijen 1982; Parker 1993; Ferriz-Mas & Schuessler 1994).
Without an opposing mechanism, inward radiative di↵usion of latitudinal temperature gradients from the convection

zone is expected to drive meridional circulations in the stable layer that would have imprinted di↵erential rotation deep
into the interior by the current age of the Sun (Spiegel & Zahn 1992). To achieve a thin tachocline, the Sun must have
a torque that forces solid-body rotation in the radiative interior and thus counters radiative spread. Several prevalent
tachocline confinement scenarios postulate the origin of this torque. In the “fast hydrodynamic (HD) scenario”
(Spiegel & Zahn 1992), the torque is caused by the Reynolds stresses associated with primarily HD instabilities of the
horizontal flows and is generated on the timescale of months to years. In the “slow magnetohydrodynamic (MHD)
scenario” (Gough & McIntyre 1998), the torque is due to a primordial magnetic field and is generated on the timescale
of radiative spread, namely, ⇠1011 years. Finally, in the “fast MHD scenario,” the torque comes from the cyclic
dynamo magnetic field in the convection zone imprinting di↵usively downward to a skin depth, similar to the skin
e↵ect for AC currents in a conductor (Forgács-Dajka & Petrovay 2001).
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Many theoretical studies have characterized the instabilities believed to cause a fast HD scenario (e.g., Charbonneau
et al. 1999a; Gilman & Dikpati 2014; Garaud 2020) and have examined how an assumed primordial or cycling magnetic
field might cause a slow or fast MHD scenario (e.g., Garaud 2002; Acevedo-Arreguin et al. 2013; Barnabé et al. 2017;
Wood & Brummell 2018). For global, 3-D simulations, computationally tractable values of the thermal Prandtl
number and buoyancy frequency do not permit substantial radiative spread (e.g., Acevedo-Arreguin et al. 2013; Wood
& Brummell 2012); instead, the tachocline spreads viscously. Transient tachoclines have been included in prior global
dynamo simulations by implementing a very small viscosity below the convection zone (e.g., Brun et al. 2011; Guerrero
et al. 2016). The tachocline still spreads inward slowly, but for the timescale on which the simulation is run, it is
e↵ectively stationary and its influence on the dynamo can be assessed.
Here, we present two 3-D, global, nonlinear simulations of a rotating solar-like star—an HD case and an MHD case—

that include a radiative interior coupled to an outer convection zone. In the HD case, the di↵erential rotation viscously
imprints throughout the entire radiative interior. In the MHD case, by contrast, dynamo action creates a cycling,
non-axisymmetric magnetic field whose torque enforces solid-body rotation in the radiative interior and maintains a
statistically steady tachocline. The magnetism in the radiative interior arises both from di↵usive imprinting of field
from the overlying convection zone (similar to the fast MHD confinement scenario), and also from local inductive
amplification. This dynamo action occurs even below the convective overshoot layer and arises from strong horizontal
motions due to equatorially confined (equatorial) Rossby waves (Gizon et al. 2020) and possibly shear instabilities as
well.

2. NUMERICAL EXPERIMENT

We use the Rayleigh code (Featherstone & Hindman 2016; Matsui et al. 2016; Featherstone et al. 2021) to evolve
the anelastic fluid equations (e.g., Gilman & Glatzmaier 1981) in a rotating spherical shell that spans rmin = 0.491R�
to rmax = 0.947R�. We use spherical coordinates: r (radius), ✓ (colatitude), and � (azimuth angle). The background
stellar structure is hydrostatic, spherically symmetric, and time-independent. The background entropy gradient en-
forces strong convective stability in the radiative interior and weak convective instability in the convection zone. The
transition between stability and instability nominally occurs at r0 ⌘ 0.719R�. More details on the thermodynamic
state are given in Appendix A.
Our shell covers approximately equal thickness in both the convection zone and radiative interior, corresponding

to the top ⇠2.1 density scale heights of the Sun’s radiative interior and the bottom 3 density scale heights of the
convection zone. Our grid resolution is N✓ = 384 and N� = 768 in the horizontal directions (the maximum spherical-
harmonic degree after dealiasing is `max = 255). We use three stacked Chebyshev domains in the vertical direction
(each with 64 grid points) with boundaries at (0.491, 0.669, 0.719, 0.947)R�. The two internal boundaries maximize
grid resolution at the transition from stability to instability.
As in Matilsky & Toomre (2020a, 2021), we rotate at three times the solar Carrington rate (⌦0 = 3⌦�, where

⌦� = 2.87 ⇥ 10�6 rad s�1; ⌦�/2⇡ = 457 nHz; 2⇡/⌦� = 25.4 days). Rotating faster than the Sun is required to
avoid the “anti-solar” states associated with the simulations’ overestimating of the fluctuating velocities at large scales
(e.g., O’Mara et al. 2016). The frame rotation frequency is ⌦0/2⇡ = 1370 nHz and the frame rotation period is
Prot ⌘ 2⇡/⌦0 = 8.45 days. A solar luminosity L� ⌘ 3.85 ⇥ 1033 erg s�1 is driven through the convection zone via a
fixed internal-heating profile and is removed at the outer boundary via thermal conduction.
At the top of the domain, ⌫(r) = (r) = 5.00⇥ 1012 cm2 s�1 and ⌘(r) = 1.25⇥ 1012 cm2 s�1, where ⌫(r), (r), and

⌘(r) are the momentum, thermal, and magnetic di↵usivities, respectively. All di↵usivity profiles increase with radius
like ⇢(r)�1/2, where ⇢(r) is the background density. At both boundaries, we use stress-free and impenetrable conditions
on the velocity, potential-field-matching conditions on the magnetic fields, and fixed-conductive-flux conditions (e.g.,
Matilsky et al. 2020; Anders et al. 2020) on the entropy.
The convection is initialized by weakly perturbing the thermal field randomly throughout the entire shell. The MHD

case is additionally initialized by weakly perturbing the magnetic field randomly throughout the convection zone only.
We define the HD case’s “equilibrated state” as the time interval during which the kinetic energy in the radiative
interior is statistically steady. For the MHD case’s equilibrated state, we additionally require that the magnetic energy
in the radiative interior is statistically steady. We define the viscous and magnetic di↵usion times across the radiative
interior to be [r0�rmin]2/⌫0 = 295 Prot and [r0�rmin]2/⌘0 = 1180 Prot, respectively, where the “0” subscript indicates
the value of the di↵usivity at r0. The HD case was run in its equilibrated state for 7810 Prot (26.5 viscous di↵usion
times) and the MHD case for 12500 Prot (10.6 magnetic di↵usion times).
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The convection zone (defined to be the region where the convective heat transport is positive) has a base rbcz that
is set by the balance of radial energy fluxes in equilibrium. Convective downflows overshoot into a thin layer within
the stable region, the top of which is rbcz and the base of which is rov (defined to be the location below which there is
negligible convective heat transport). For the MHD case, rbcz = 0.729R� and rov = 0.710R�. We define the radiative
interior as the layer spanning rmin to rov. Calculation of rov and rbcz for each case is done explicitly in Appendix A.
The non-dimensional parameters characterizing each case are given in Appendix B.

3. STEADY-STATE SOLID-BODY ROTATION IN THE RADIATIVE INTERIOR

We define the rotation rate as ⌦(r, ✓) ⌘ ⌦0 + hv�it /r sin ✓ and the rotation frequency as ⌦/2⇡, where v� is the
azimuthal velocity. Throughout the text, angular brackets with no subscript denote a zonal average at a particular
instant, whereas a “t” subscript denotes a combined temporal and zonal average, and a “sph” subscript denotes a
combined temporal and spherical-surface average. Unless otherwise specified, temporal averages are taken over the
full equilibrated state. Figures 1(a, b) show the equilibrated rotation-frequency profiles for both simulations in the
meridional plane. In the HD case, the di↵erential rotation has viscously imprinted throughout the entire radiative
interior. In the MHD case, however, the radiative interior has nearly solid-body rotation.
Figure 1(c) shows the rotation profile in the MHD case as a function of radius for various latitudes. We define

the radially varying latitudinal rotation contrast �⌦(r) as the di↵erence in rotation rate between the equator and
60� latitude at a fixed radius. In the HD case, �⌦(r)/⌦0 ⇠ 0.2 throughout the whole shell. The MHD case has
�⌦(r)/⌦0 = 4.2 ⇥ 10�2 ⌘ �⌦CZ/⌦0 at the top of the convection zone and �⌦(r)/⌦0 = 7.6 ⇥ 10�4 ⌘ �⌦RI/⌦0 at
the bottom of the radiative interior. We define the base of the tachocline, rtach = 0.641R�, to be the radial location
where �⌦(r) has dropped by a factor of 20 from its value at the top of the convection zone and call the layer spanning
rtach to rbcz the MHD case’s tachocline.
The velocity and magnetic-field amplitudes for the MHD case are shown in Figures 1(d, e). Below the overshoot

layer, the vertical components of the fluctuating velocity, v0 ⌘ v� hvi, and fluctuating magnetic field, B0 ⌘ B � hBi,
are small compared to the horizontal components. Due to the stable stratification, v0r falls by ⇠2 orders of magnitude
over the overshoot layer and by ⇠5 orders of magnitude over the whole radiative interior.
The non-axisymmetric magnetic field in the MHD case is composed mainly of azimuthal orders m = 1 and m = 2.

Figures 2(a–d) show snapshots of the horizontal field components B� and B✓ at two di↵erent depths. At both depths,
the same large-scale structure is apparent in each field component, though it is significantly smoother and more
coherent in the deeper layer. The topology is similar to the “partial wreaths” we identified in convection-zone only
dynamo simulations (Matilsky & Toomre 2020a,b). In that work, an initially regularly cycling dynamo composed of
full magnetic wreaths (strong m = 0 signature) destabilized into two partial wreaths (strong m = 1 signature). The
partial wreaths were essentially stationary in a properly chosen rotating frame and reversed their polarity (sign of the
m = 0 component) through in-place amplitude modulation. The polarity-reversal time varied, forming a quasi-cyclic
dynamo with multiple frequency components.
Figure 2 shows the real part of the m = 1 component of B✓ (two partial wreaths) as a function of time and radius.

The partial wreaths appear first in the convection zone and then move downward into the overshoot layer, where
they are significantly amplified, before finally penetrating deep into the radiative interior. The other field components
(Br and B�) also behave this way, as do the m = 2 structures. From Figure 2(e), one quasi-regular dynamo cycle
occurs every Pdyn ⇠ 500 Prot. Furthermore, the partial wreaths migrate downward at approximately the same speed
predicted by the skin e↵ect, namely vskin ⌘

p
2⌘ov!dyn, where !dyn/2⇡ ⌘ 1/Pdyn = 2.74 nHz and ⌘ov is the value of

the magnetic di↵usivity at rov. The skin depth is �skin ⌘
p

2⌘ov/!dyn = 0.082R�, which allows the transport of field
significantly below the overshoot layer.

4. DYNAMICAL MAINTENANCE OF SOLID-BODY ROTATION

The MHD case’s tachocline is statistically steady, wandering by no more than ⇠3 nHz from the profile shown in
Figures 1(b,c) throughout the equilibrated state. There is thus good temporally averaged torque balance, which we
find is primarily between the viscous and magnetic torques:

r ·
⇥
⇢⌫r

2 sin2 ✓r⌦
⇤

| {z }
viscous torque ⌘ ⌧visc

+
1

4⇡
r ·

⇥
r sin ✓ hB�Bpolit

⇤

| {z }
magnetic torque ⌘ ⌧mag

⇡ 0, (1)
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Figure 1. Radiative interior forced into solid-body rotation. (a) Contours of isorotation, (⌦ � ⌦0)/2⇡ = constant, in the
HD case, plotted in the meridional plane. Negative values are normalized separately from positive values. There are three
equally-spaced positive and negative contours each (solid contours). The zero contour ⌦ = ⌦0 is dashed. (b) Like (a), but for
the MHD case. (c) Rotation frequency ⌦/2⇡ at various latitudes along radial lines in the MHD case. The rotation contrasts
in the convection zone and radiative interior are marked by vertical arrows; the frame rotation frequency is marked by the

horizontal dashed line. (d) Fluctuating velocity amplitude
⌦
|v0|2

↵1/2
sph

. Each component v0r, v
0
✓, and v0� is plotted separately. (e)

Same as (d), but for
⌦
|B0|2

↵1/2
sph

. In this figure and those that follow, the dashed black, dotted green, and dash-dotted magenta

curves refer to rbcz, rov, and rtach, respectively.

where Bpol ⌘ Brêr+B✓ê✓. Because the dynamo is non-axisymmetric and cycling, we decompose B into its constituent
m and frequency ! components Bm!. Each component defines a Fourier mode exp (im�� i!t), moving in azimuth
angle with phase velocity !/m. We define the magnetic torque ⌧mag,m! from a given Bm! such that Parceval’s theorem
can be written

P
m

P
! |Bm!|2 =

⌦
|B|2

↵
t
. Then

⌧mag,m! ⌘ 1

4⇡
r · [r sin ✓B⇤

�,m!Bpol,m!], (2)

where the asterisk denotes the complex conjugate. We define ⌧mag,m ⌘
P

! ⌧mag,m! and have

X

m

⌧mag,m =
X

m

X

!

⌧mag,m! = ⌧mag. (3)

The torque balance in the tachocline is shown in Figure 3(a), considered over about four dynamo cycles. Viscosity
works to imprint the di↵erential rotation from above by spinning up the equator and slowing down the mid-latitude
regions, but is halted by the magnetic torque. The other torques that could play a role (Reynolds stress and meridional
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Figure 2. Non-axisymmetric, cycling dynamo. Snapshots of the horizontal magnetic fields at t = 4422Prot for (a) B� in the
overshoot layer, (b) B✓ in the overshoot layer, (c) B� in the tachocline, and (d) B✓ in the tachocline. Each field is plotted in
full Mollweide view, latitudes and longitudes are marked every 45� by solid curves, and 15� latitude is marked by dashed line.
(e) The real part of the m = 1 component of B✓ (see Equation (2)), plotted as a function of time and radius at 15� latitude.
The vertical dashed lines denote the time interval considered in Figure 3. The two ticks on the leftmost vertical line show the
depths sampled by the Mollweides. The diagonal dashed lines show the speed at which di↵usion would imprint the oscillating
field downward from the base of the overshoot layer according to the skin e↵ect.

circulation) are negligible in the tachocline. The magnetic torque is almost entirely due to just the m = 1 and m = 2
components of the magnetic field, as shown by dotted blue curve in Figure 3(a). We consider the latitudinal variation of
the frequency components ⌧mag,1! in Figure 3(b) and ⌧mag,2! in Figure 3(c). Remarkably, these profiles are all basically
similar; each frequency component of the magnetic field separately opposes the viscous spread of the tachocline.

5. NON-AXISYMMETRIC FERRARO’S LAW

Ferraro’s law of isorotation was originally stated for temporally steady and axi-symmetric magnetic fields in stellar
radiative interiors: “Contours of isorotation tend to fall along poloidal magnetic field lines” (Ferraro 1937). The
argument behind this law is perhaps even more relevant in the non-axisymmetric, cycling context. Di↵erential rotation
(nonzero r⌦) bends poloidal magnetic field lines to produce a toroidal field through mean shear. From the toroidal
component of the MHD induction equation, we have

@B�

@t
⇡ r sin ✓Bpol ·r⌦

| {z }
mean shear

� vr
@B�

@r| {z }
toroidal pumping

� {r⇥ [⌘(r)r⇥B]}�| {z }
toroidal di↵usion

+ ... (4)
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Figure 3. Magnetic torque maintaining the tachocline. We show torques averaged over the time interval 4422Prot to 6299Prot,
indicated by the dashed vertical lines in Figure 2(e). (a) The magnetic and viscous torques and their sum as functions of
latitude in the tachocline. (b) and (c) The frequency-decomposed contributions to ⌧mag,1 and ⌧mag,2, respectively. The frequency
resolution is 0.73 nHz and the Nyquist frequency is 5,000 nHz.

The ellipsis denote terms neglected from the full induction [r⇥ (v⇥B)]�, like compression and horizontal advection.
Note that we define the induction by mean shear as the di↵erential rotation (zonally and temporally averaged) bending
the time-dependent, non-axisymmetric poloidal magnetic field. When the mean shear is dominant, Equation (4) yields
B� ⇡ (r sin ✓Bpol ·r⌦)tbend, where tbend is the timescale over which the shear r⌦ is imposed. From Equation (1), the
associated torque due to magnetic tension is r ·

⇥
r
2 sin2 ✓ hBpol(Bpol ·r⌦)tbendit

⇤
, which tends to eliminate gradients

in ⌦ parallel to Bpol. Assuming the magnetic torque dominates, equilibrium requires hBpol ·r⌦it = 0. For an
axisymmetric, temporally steady poloidal magnetic field, this reduces to the original Ferraro’s law, hBpolit ·r⌦ = 0.
However, as noted by Mestel & Weiss (1987), a non-axisymmetric or time-dependent field tends to yield solid-body
rotation. For Bpol ·r⌦ to average to zero, the obvious solution is Bpol ·r⌦ = 0 everywhere and at all times. If the
direction of Bpol varies, then we must have r⌦ = 0.

6. MAGNETIZATION OF THE RADIATIVE INTERIOR

We consider the production of toroidal magnetic energy in Figure 4(a) (h· · · isph applied to the product of Equation
(4) and B�/4⇡). Note that the mean shear can be decomposed into its vertical (r sin ✓Br@⌦/@r) and horizontal
(sin ✓B✓@⌦/@✓) components. In the radiative interior, strong toroidal field is sustained mostly by the horizontal mean
shear (and to a lesser extent, by the vertical mean shear) and dissipated di↵usively. Note that magnetic pumping
(defined here to be magnetic energy production from radial advection) has a role in transporting B� from the convection
zone to the base of the overshoot layer. The rapid radial oscillations in the pumping profile below the overshoot layer
have negligible amplitude and are likely due to the many-celled meridional circulation in the stable region.
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Figure 4. Dynamo action in the MHD case’s radiative interior. Production of (a) B2
�/8⇡ and (b) B2

✓/8⇡, plotted with respect
to radius below r/R� = 0.760. The terms labeled in Equations 4 and 5 are abbreviated as full induction (ind), di↵usion (dif),
horizontal mean shear (hms), vertical mean shear (vms), pumping (pum), compression (com), and shear (she). Each panel
shares the same x- and y-axes. The y-axis is scaled logarithmically (unshaded region) for absolute values > 3⇥ 10�6 erg cm�3

and linearly (shaded region) otherwise.

Figure 4(a) shows that the MHD case’s tachocline stems from strong B✓, also consistent with Ferraro’s law. Broadly
speaking, B✓ in the radiative interior can arise either through inward di↵usion of the convection zone’s B✓ or through
local inductive amplification. We have already seen from Figure 2(e) that the first of these mechanisms is significant.
To isolate the second mechanism, we consider the ✓-component of the induction equation:

@B✓

@t
⇡�B✓

✓
1

r sin ✓

@v�

@�
+

cot ✓

r
v✓

◆

| {z }
✓ compression

+ r(Brêr +B�ê�) ·r
⇣
v✓

r

⌘

| {z }
✓ shear

� vr
@B✓

@r| {z }
✓ pumping

� {r⇥ [⌘(r)r⇥B]}✓| {z }
✓ di↵usion

+ ... (5)

As in Equation (4), the ellipsis denote terms neglected from the full induction [r ⇥ (v ⇥ B)]✓. The production of
B

2
✓/4⇡ (h· · · isph applied to the product of Equation (5) and B✓/4⇡) is shown in Figure 4(b). On long timescales, B✓

is destroyed by di↵usion and amplified inductively at all radii. The induction comes primarily from compression (the
zonal squeezing of B✓) and shear (the tilting of radial and toroidal field into B✓). Like for B�, magnetic pumping
deposits B✓ from the convection zone to the base of the overshoot layer.

7. DISCUSSION

Our MHD case represents a new type of fast MHD confinement scenario, in which the poloidal field penetrates down-
ward di↵usively, cycles quasi-periodically, is composed of non-axisymmetric partial wreaths, and is locally amplified
in the deep layers by induction. The original fast MHD scenario relies on a turbulently enhanced magnetic di↵usion
to make the nominal solar-cycle skin depth (only ⇠10 km) on par with the tachocline thickness (Forgács-Dajka &
Petrovay 2001). However, the Sun’s full dynamo field, which has modulations on many di↵erent timescales like grand
minima and the biennial oscillation (e.g., Hathaway 2015), may extend deeper than this nominal skin depth. Any
temporally steady component of the field, for example, would have spread far below the tachocline, even without
turbulent di↵usion (the molecular magnetic di↵usion time across the radiative interior is ⇠8 billion years; across the
tachocline, ⇠20 million years; see Brandenburg & Subramanian 2005). Because di↵erent frequency components of a
dynamo can produce similar torques (Figure 3), the temporally steady field could work in concert with the cycling
components to confine the solar tachocline.
We note that many prior global simulations with coupled convection zones and radiative interiors display strong

horizontal velocities and magnetic fields below the overshoot layer, even when there is no explicit di↵usivity (e.g.,
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Figure 5. Rossby Waves in the radiative interior. Power in the radial vorticity (integrated over latitude) as a function of m and
! for (a) the deep interior and (b) the tachocline. For `�m = 0 and `�m = 1 (0 latitudinal nodes in the spherical harmonic
and 1 node, respectively), the dispersion relation given by Equation (6) is plotted versus m using black dots. The power has
been averaged over eight realizations of the wavefield, each of length 206Prot. For each realization, the frequency resolution is 5
nHz and the Nyquist frequency is 5,000 nHz.

Brun et al. 2011; Alvan et al. 2014; Guerrero et al. 2016; Bice & Toomre 2020, 2022). In Lawson et al. (2015), it is
even suggested that local induction may be consistent with the achieved downward imprinting of magnetic field from
a cycling Poynting flux.
If the poloidal field can be inductively amplified locally, then the precise value of the turbulent magnetic di↵usion

is even less relevant. A small seed poloidal field could grow to amplitudes capable of tachocline confinement. The
source of strong horizontal motions has not previously been identified definitively, but may be a combination of shear,
magnetic, and buoyancy instabilities (e.g., Dikpati & Gilman 1999; Gilman 2018). In our case, equatorial Rossby
waves (Gizon et al. 2020) evince the clearest signature in the horizontal motions. Figure 5 shows the power in the
radial vorticity with respect to m and ! (summed over all latitudes). We overlay the theoretical dispersion relation
for equatorial Rossby waves,

!`m = � 2⌦0m

`(`+ 1)
, (6)

where ` is the spherical-harmonic degree (e.g., Zaqarashvili et al. 2021). In the deep layers, the power in radial vorticity
is closely aligned with Equation (6), with small frequency shifts due to the e↵ects of the di↵erential rotation and cycling
magnetic field. There is also some significant low-m power at frequencies on the order of tens of nHz, which may in
part be due to di↵erent `�m ridges of Equation (6) converging to zero frequency for low m and high `. Furthermore,
Rossby waves in this frequency range would be significantly a↵ected by the di↵erential rotation and cycling dynamo,
yielding critical-latitude, high-latitude, and MHD Rossby waves (Gizon et al. 2020; Zaqarashvili et al. 2021). In the
tachocline, the Rossby waves lie amidst a largely featureless background, and their low-frequency signature is stronger.
This background may be due to overshooting plumes, which should impart significant vorticity to the deeper layers in
a stochastic fashion (Tobias et al. 1998).
In Gilman (1969), it was shown that Rossby waves in the convection zone could be baroclinically unstable and could

achieve a complete dynamo loop (Zaqarashvili et al. 2021). Studies also shown that baroclinically unstable Rossby
waves likely exist in the solar tachocline and could produce poloidal magnetic field (e.g., Charbonneau et al. 1999b;
Gilman 2018; Zaqarashvili et al. 2021). Many of these instabilities set in at m = 1 and m = 2 (e.g., Garaud 2001;
Lawson et al. 2015; Gilman 2018). In Charbonneau et al. (1999b), the shear instability arise from critical-latitude
Rossby waves, which appear when the frequency from Equation (6) is comparable to the latitudinal di↵erential rotation
contrast. These results are strongly suggestive of critical-latitude (potentially unstable) Rossby waves forming the low-
frequency signature of power in Figure 5.
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Equatorial and critical-latitude Rossby waves have been identified helioseismically (Löptien et al. 2018; Gizon et al.
2020). The critical-latitude modes, in particular, may have most of their energy near the base of the convection zone
(Gizon et al. 2021). They could thus produce strong horizontal motions at least down into the tachocline and our work
suggests that such motions may extend even deeper. In summary, we o↵er two new perspectives on the solar interior.
First, tachocline confinement is possible by a self-excited, 3-D dynamo magnetic field that is non-axisymmetric and
has multiple cycling frequency components. Second, strong horizontal motions may amplify magnetic field locally
through induction, even below the overshoot layer. Both perspectives suggest a dynamically active radiative interior
and challenge its perceived role as a quiescent storage reservoir.
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APPENDIX

A. BACKGROUND THERMODYNAMIC STATE

In our models, we employ a spherically symmetric, time-independent background state that represents the stable-to-
unstable transition in the Sun that occurs at the base of the convection zone. We choose a simplified entropy-gradient
profile dS/dr, which is zero in the convection zone, has a constant positive value in the stable layer, and has smooth
matching in between:

dS

dr
=

8
>>><

>>>:

� r  r0 � �

�

⇢
1�

h
1�

⇣
r�r0
�

⌘2i2�
r0 � � < r < r0

0 r � r0,

(A1)

where � ⌘ 10�2 erg g�1 K�1 cm�1 and � ⌘ 0.05R�. We choose a background gravitational-acceleration profile of

g(r) =
GM�
r2

, (A2)

where G = 6.67 ⇥ 10�8 dyn cm2 g�2 is the gravitational constant and M� = 1.99 ⇥ 1033 g is the mass of the Sun.
We write the pressure, density, and temperature as P (r), ⇢(r), and T (r), respectively. Hydrostatic balance and the
ideal-gas condition yields

T (r) =� exp


S(r)

cp

� Z r

r0

g(x)

cp
exp


�S(x)

cp

�
dx

+ T 0 exp


S(r)

cp

�
, (A3a)

P (r) = ⇢0RT 0 exp


� S(r)

R

�
T (r)

T0

��/(��1)

, (A3b)

and ⇢(r) = ⇢0 exp


� S(r)

R

�
T (r)

T0

�1/(��1)

. (A3c)
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Here, cp = 3.50 ⇥ 108 erg g�1 K�1 is the specific heat at constant pressure, � = 1.67 is the ratio of specific heats,
and R = (� � 1)cp/� is the gas constant. We choose ⇢0 = 0.181 g cm�3 and T 0 = 2.11⇥ 106 K, consistent with solar
models (Christensen-Dalsgaard et al. 1996), and S(r0) = 0. We choose the internal heating profile Q(r) to occupy the
convection zone only:

Q(r) = ↵ tanh


r � r0

�heat

�
[P (r)� P (rmax)], (A4)

where �heat = 0.03R� and the constant ↵ is chosen so the volume integral of Q(r) over the whole shell is the solar
luminosity. In the convection zone, the reference state is nearly identical to our prior work and closely resembles the
standard solar “model S” (Featherstone & Hindman 2016; Matilsky et al. 2020; Hindman et al. 2020).
In keeping with past work (Brun et al. 2017), we define the convection zone (and hence its base rbcz) to be the

region in which the convective heat flux (or enthalpy flux Fe) is positive. Similarly, we define the base of the overshoot
layer rov as the location below which Fe is negative but very close to zero (we choose a tolerance of 5% the minimum
value of Fe in the overshoot layer). Though the nominal transition between stability and instability occurs at r0,
convective heat transport moves the base of the convection zone slightly upward to rbcz > r0. Convective downflows
overshoot into a thin layer within the stable region. The base of this overshoot layer (defined to be the location below
which there is negligible vertical transport of heat by the fluid flow—and concurrently very little radial velocity) is
located at rov < r0. For the MHD case, rbcz = 0.729R� and rov = 0.710R�. For the HD case, rbcz = 0.726R� and
rov = 0.701R�.

B. NON-DIMENSIONAL PARAMETERS

The parameter regime of our simulations is described by four non-dimensional numbers (five for the MHD case)
(Hindman et al. 2020): the flux Rayleigh number RaF, the Ekman number Ek, the dissipation number Di, the thermal
Prandtl number Pr, and (for the MHD case only) the magnetic Prandtl number Prm. The first four numbers are the
same in both simulations. These numbers are defined and evaluated as

RaF ⌘ g̃F̃H
4

cp⇢̃T̃ ⌫̃̃
2
= 7.50⇥ 105,

Ek ⌘ ⌫̃

⌦0H
= 1.07⇥ 10�3

,

Di ⌘ g̃H

cpT̃
= 1.72,

Pr ⌘ ⌫̃

̃
= 1,

and Prm ⌘ ⌫̃

⌘̃
= 4.

Here, we define the system’s length-scale as H ⌘ rmax � r0, the tildes denote volume averages of the underlying
reference-state radial profiles (from r0 to rmax), and F (r) ⌘ (1/r2)

R r
rmin

Q(x)x2
dx is approximately the energy that

convection and conduction must carry to maintain a statistically steady state.
In each simulation’s equilibrated state, several diagnostic non-dimensional numbers describe the system: the

Reynolds number Re, the magnetic Reynolds number Rem, the Rossby number Ro, and the buoyancy parameter
B. These are defined as

Re ⌘ ṽ
0
H

⌫̃
,

Rem ⌘ ṽ
0
H

⌘̃
,

Ro ⌘ ṽ
0

2⌦0H
,

and B ⌘
fN2

⌦2
0



Solar Tachocline Confinement by Interior Dynamo Action 11

Table B1. Diagnostic non-dimensional numbers for the HD and MHD cases. Diagnostic parameters defined in the
text are shown volume-averaged over the convection zone, overshoot layer, and radiative interior.

HD case MHD case

Convection zone Overshoot layer Radiative interior Convection zone Overshoot layer Radiative interior

Re 45.8 58.4 15.7 36.3 21.6 2.86

Rem - - - 145 86.3 11.5

Ro 2.47⇥ 10�2 1.48⇥ 10�2 2.59⇥ 10�3 1.96⇥ 10�2 5.58⇥ 10�3 4.84⇥ 10�4

B �0.725 1,130 28,000 �0.710 206 26,700

and evaluated in Table B1. Here, the tildes denote combined temporal and volume averages, v
0 ⌘ |v0|, N

2 ⌘
(g/cp)[dS/dr+ hdS0

/drisph] is the squared buoyancy frequency, and S
0 is the entropy fluctuation from the background

state.
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